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1 - Introduction 

 
Assessing default risk and the timing of such an event is crucial in 

order to evaluate the prices and returns of bonds. Although the effects of 
credit risk on bond values have long been analyzed, only relatively recently 
analytical models were developed in order to study and quantify these effects. 
A rational theory of credit risk is based on the pathbreaking model of Merton 
(1974). Since then, two main streams of research have been developed: 
structural models, based on a balance-sheet notion of solvency and option 
pricing theory, and reduced-form (or intensity-based) models of credit risk. 

In this contribution, we study structural models of defaultable bond 
pricing in which the debtor’s inability (or willingness) to pay is explicitly 
modeled. A firm defaults when it cannot meet its financial obligations. 
Structural approach is based in an explicit manner on the timing of such an 
event: default happens when assets are too low relative to liabilities, 
depending on some critical level being attained. 

Çetin et al. (2004) argue that managers of a firm should know if 
default is about to occur. From managers’ perspective, default is a predictable 
event. This perspective is also consistent with the formulation of structural 
credit risk models, in which the time of default is an accessible stopping time. 
On the other hand, the market has partial information1, which makes default a 
surprise and the default time not predictable2. This latter perspective is 
consistent with reduced form credit risk models.  

In the Black-Scholes-Merton model default may occur at the maturity 
date in the event that the issuer’s assets are less than the face value of the 
debt. While first-passage models are based on the assumption that default 
occurs as soon as the asset value of the firm falls below a certain threshold. 
Such a boundary is often set equal to the face value of the firm's liabilities. 
Black and Cox (1976) introduce the idea that default can occur at the first 
time that assets drop to a sufficiently low level, either before or at the maturity 
of the debt. They assume a simple time-dependent default boundary. 

First-passage time models have been widely studied and developed in 
the literature. A list of important contributions includes, but it is not limited 
to, Kim et al. (1993), Shimko et al. (1993), Longstaff and Schwartz (1995), 
Bryis and de Varenne (1997), Cathcart and El-Jahel (1998), Saá-Requejo and 

                                                 
1 Or it has the managers’ information set plus a noise (see Duffie and Lando, 2001), or leaves 
any knowledge of firm's value apart, by considering default as an exogenous event. 
2 The time of default becomes inaccessible, which means that one is not able to anticipate 
default. 
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Santa-Clara (1999), Taurén (1999), Collin-Dufresne and Goldstein (2001), 
Hsu et al. (2003), and Hui et al. (2003). 

First-passage approach makes no distinction between the time at 
which a firm enters financial distress and the time at which it is either 
liquidated or a reorganization plan is accepted and the firm emerges from 
bankruptcy. In the classical approach, a firm defaults when its assets are too 
low according to some measure. Consequently the firm stops operating and is 
immediately liquidated. This definition of default seems not reflecting 
economic reality: bankruptcy laws often grant an extended time period for 
restructuring (see Eberhart et al., 1999, and Helwege, 1999). 

Recently there has been some interest in the credit risk literature in 
models in which the duration of the default (the time the firm spends in 
bankruptcy before being reorganized or liquidated) is explicitly modeled. 
Such models involve stopping times related to excursions and hence we will 
refer to as excursion time models. In the excursion approach the default time 
is defined as the first instant at which the process that governs default has 
spent continuously (or cumulatively) a fixed time period (called the window) 
below the default boundary. These models are based on the theory of 
valuation of Parisian options (see e.g. Chesney et al., 1997, and Haber et al., 
1999) and occupation time derivatives (Hugonnier, 1999). Unlike first-
passage time approach, the excursion time approach allows for a non-
absorbing state of default. Moraux (2003) points out that only occupation time 
(cumulative excursion time) models describe the whole past financial distress. 
Such an approach considers the total time spent by the value process beyond 
the default threshold over the monitored time period, hence it seems more 
suitable in order to study the financial history and distress periods of the debt 
issuer.  

Both the first-passage time and the Parisian time approaches can be 
generalized by defining the default time as the first instant at which the firm 
value process (or another signaling process) either remains a certain time 
below the default threshold or hits a lower barrier. This corresponds, for 
instance, to a real situation in which a firm is allowed temporarily to be short 
of funds, but enters default immediately when the financial distress becomes 
severe and a critical level, defined as a threshold set below the classical 
default boundary, is reached. 

Based on such an idea, we propose a generalization of both the first-
passage and excursion approaches, which takes into consideration the severity 
and persistency of the financial distress. The main focus is on the definition of 
the timing of default. Moreover, we examine the effects of different default 
time specifications on bond prices and credit spreads, under the assumptions 
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of a particular structural model. To this aim, in the absence of closed form 
solutions, in general, numerical procedures are required, in particular when 
some simplifying assumptions regarding default-free interest rate modeling 
are relaxed. Monte Carlo simulation can be used in order to estimate the 
default probability.  

An outline for this paper is as follows. Section 2 reviews first-passage 
time models and recalls some well known results. Excursion time approach is 
analyzed in section 3. In section 4, a new formulation of the timing of default 
is introduced. Section 5 presents some results of the simulation analysis. 
Section 6 concludes. In the appendix we summarize the model proposed by 
Cathcart and El-Jahel (1998), which will be used in the numerical 
experiments. 

 
 

2 - First-passage time models 
 
In the Black-Scholes-Merton model default may occur only at the 

maturity of the debt. In first-passage time models, introduced by Black and 
Cox (1976), this assumption is relaxed to allow for early default. More 
precisely, the time of default is defined as the first instant at which a relevant 
process, describing for instance the assets value of the firm, falls below a 
certain level called the default boundary (or default barrier). Such a boundary 
can be assumed as a constant threshold (as e.g. in the contribution by 
Longstaff and Schwartz, 1995), a time-dependent barrier (Black and Cox, 
1976, consider an exponential default boundary), or it can be governed by 
some stochastic process (see, e.g., Saá-Requejo and Santa-Clara, 1999). A 
possible economic interpretation of the default boundary is the presence of 
some safety covenants in the contract. This boundary may be given 
exogenously or determined endogenously, as the solution of an optimal 
decision problem3. 

When the firm value falls below the distress threshold, the firm enters 
bankruptcy and may be either reorganized or liquidated. This point is crucial: 
in first-passage time modeling of credit risk no distinction is made between 
the time at which a firm enters bankruptcy (under Chapter 11) and the time at 
which it is either liquidated or the reorganization plan is accepted and the firm 
exits bankruptcy. In the excursion time approach, which will be discussed in 
section 3, the duration of the default (the time the firm spends in bankruptcy) 
is expressly modeled. 

                                                 
3 See, among others, Leland (1994) and Leland and Toft (1996). 
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In this section, we take into consideration first-passage time models. 

Formally, let us consider a continuous time model on the time horizon ],0[ T . 

Assume that a probability space ,( F ),P  is equipped with a filtration 

(Ft )0; t , provided some technical conditions, where Ft represents the 
information set available at time t. 

In a contingent claims framework (with full information), let us 
consider a firm with a single issue of debt in the form of a zero-coupon bond 
(hereafter ZCB) promising to pay the face value (which is assumed to be one 
euro) at the maturity date T. Let ),( Ttv  denote the price at time Tt   of a 
defaultable ZCB with maturity T. Assume, moreover, that default-free zero-
coupon bonds are traded for all maturities, and let r denote the default-free 
spot interest rate4. Both defaultable and default- free bonds markets are 
assumed to be arbitrage-free, so there exists an equivalent martingale measure 
Q 5. 

In this setting, consider a stochastic process 0)(  ttXX  (continuous 

and adapted), which describes the firm’s value (or another relevant firm’s 
feature, as assets value, leverage ratio, operating cash flows, etc.), and the 
default boundary ],0[)( TttHH  . Then, the information set at time t will be 

Ft );( tuX u   . Note that, when the default boundary is modeled as a 

stochastic process, the information set is  Ft );,( tuHX uu   . 

As regards the recovery value upon default, different formulations are 
possible. In practice, when a firm enters default and is then liquidated, 
bondholders receive a variety of securities (different combinations of cash, 
zero-coupon or coupon bearing bonds, shares, warrants, and convertible 
securities). Here we make some simplifying assumptions (in line with Jarrow 
and Protter, 2004): bondholders may receive, for instance, the value of the 
boundary, which could be paid either at the default time or at maturity T. As 
an alternative, creditors may receive a fraction (which may be a parameter 
exogenously specified or even a random variable) of an equivalent default-
free ZCB maturing  at time T.  

                                                 
4 For the moment, no assumption is made about the spot rate dynamics. r will be either a 
constant parameter, a time-varying function, or governed by some stochastic process. 
5 This probability measure may not be unique (see Jarrow and Protter, 2004). 
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In first-passage time models, the time of default is a random variable  

whose distribution is that of the first-hitting or first-passage time of the  
relevant process X through the default boundary ],0[)( TttHH  .  Formally,  

 

}:),0[inf{ tt
H HXTt  ,                                  (1)  

 
with inf   . 

It turns out that, the random time H  is a predictable stopping time6, 
which means that the time of default is not completely a surprise in first- 
passage time models, but can be anticipated in some sense by observing the 
trajectory taken by the process X. This feature will be exploited in the 
simulation analysis in order to estimate the average default time and the 
probability of default.  

Of course, at maturity T, the default boundary has to be specified in a 
proper way to avoid inconsistencies (see Giesecke, 2004). At maturity in 
general default occurs if assets value is less than the face value of the debt, 
denoted by F (hence FHT  ). Let 

 









otherwise;

if FXT T
T                                      (2) 

 

the default time, denoted by * , is defined as the minimum between the first 

hitting time H  and the random time T , 
  

.*
T

H                                                 (3) 
 
As an example, if we assume that the interest rate r is constant, and 

the  recovery value upon default is equal to the barrier value at default, then 
the price at time t of a defaultable ZCB with maturity date T is given by 

 

                                                 
6 A stopping time   is predictable if there exists a sequence of stopping times 1)( nn  such 

that n  is increasing,  n  on }0{  , for all n, and   nnlim  a.s. The 

sequence )( n  is said to announce  . Jarrow and Protter (2004) point out that this property 

no longer holds, in general, when the process X presents jumps. 
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11E ,                    (4) 

 
where )(),(  tTtv E  denotes expectation under the probability measure Q, 

conditional to the information at time t (and conditional on no default until 
time t), and A1  is the indicator function of A.  

),( Ttv  in equation (4) can be evaluated analytically in some special 
cases (see Bielecki and Rutkowski, 2002). In the absence of closed form 
solutions, one must resort to numerical approximations and computational 
techniques, in particular when some simplifying assumptions regarding 
default-free interest rate dynamics are relaxed. Monte Carlo simulation can be 
used in order to estimate the default probability (see Hsu et al., 2003). 
 

 
3 - Excursion and occupation time models 

 
First-passage approach does not discriminate between the time at 

which a firm enters bankruptcy and the time at which it is either liquidated or 
reorganized: a firm defaults when its assets are too low according to some 
criterion, and is immediately liquidated. This definition of default no longer 
reflects economic reality: bankruptcy laws often grant an extended time 
period for restructuring7. In the excursion time approach, discussed in this 
section, the duration of the default is a crucial feature of the model.  

Recently there has been some interest in the credit risk literature in 
models which involve stopping times related to excursions8. These models are 
based on the definitions of Parisian time and occupation time. The Parisian 
time can be defined as the first instant when a stochastic process (typically a 
Brownian motion) spends a given amount of time (called the window in the 
literature related to Parisian options) consecutively beyond a certain barrier. 
This excursion time has been first studied by Chesney et al. (1997) in order to 
define Parisian barrier options. Parisian options are financial derivatives for 
which the barrier in- or out-feature is activated when the process driving the 

                                                 
7 Eberhart et al. (1999) investigate the stock return performance of a sample of firms emerging 
from bankruptcy, and find that the average time spent in bankruptcy (from the default 
announcement date through the first trading date after distress) is 22.39 months on average. See 
also Helwege (1999). 
8 See Moraux (2003), Galai et al. (2003), Paseka (2003), Broadie et al. (2004), François  and 
Morellec (2004), Giesecke (2004), Yu et al. (2004). 
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underlying price spends continuously a certain amount of time beyond the 
barrier.  

Unlike first-passage time approach, excursion time approach allows 
for a non-absorbing state of default. Excursion times seem then an attractive 
tool to define default that occurs when a “grace period” is granted. Moreover, 
compared to the definition of default time as a first-passage time, this 
formulation does not suffer from a threshold effect9. Even if the relevant 
process has crossed the barrier, default has not necessarily occurred yet. As a 
result, the model is more robust than in the “one-touch” case, in which the 
signaling process need only hit the barrier (no matter how shortly it stays 
below that threshold) for the default to occur.  

Parisian times could then be useful in representing real situations 
when  delays, between the default event and reorganization (or liquidation) of 
the firm, are involved. Such a delay could be either a fixed parameter 
exogenously specified (e.g. prescribed by a debt covenant), or a parameter of 
the model which has to be estimated from market data. As an alternative, the 
duration of the default (together with the default boundary) could also be the 
solution of an optimal decision problem, as in the model proposed by Paseka 
(2003).  

In the following, we assume this delay is constant and it is denoted by 
 . For simplicity, let us consider a constant default boundary, H. Assume 
also .0 HX   

Let 

}:sup{ HXts s
H
t                                   (5) 

 
be the last time, before t, that the process X hits the threshold H, and define 
the excursion (Parisian) time as follows,  

 

}.)(:0inf{ }{   HX
H
t

H

t
tt 1                      (6) 

 

The default time is defined as the random time H
  and the default 

probability is ].[][ }{ HX
H

t
T   1EQ   

Intuitively, the probability of default in the excursion time approach 
should  fall between the first-passage time case and the default probability in 
the Black-Scholes-Merton model. When the time window   is zero, we 

                                                 
9 See Haber et al. (1999). 
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recover the simple first-passage case, while when   is very long and 
approaches T, one expects the probability of default to reduce to that in the 
Black-Scholes-Merton model. In this case, one will check for default only at 
maturity of the bond. 

Let us consider the Parisian time case. Define the barrier time 
 

],0[ Ttt H
tt                                  (7) 

 
as the length of time the process X has spent below the default barrier in the 
current excursion. t  is simply the difference between the current time t and 

the last time X hits the barrier. Note that, if the process X is currently above 
the default threshold, then 0 t .  

Starting from HX 0 , the dynamics of t  is described as follows10  

 













 

,0 HX

HX

HXdt

d

t

tt

t

t                                (8) 

 
where 

t
 is the left limit of t . The “clock” t  is reset to zero when the 

barrier is reached from below, and it does not change if the process is above 
the barrier. Default occurs only if the length of the current excursion exceeds 
a given level,  t , where   is the barrier time parameter. The  

probability of default is ][][  t
H T QQ  . In the absence of closed-

form solutions, the probability ][  tQ  can be computed by simulation11. 

By exploiting the definition of the clock's dynamics (8), the  problem can be 
implemented in a very intuitive way.  

As previously observed, the Parisian time approach does not suffer 
from a threshold effect, in that a simple hitting of the barrier does not cause 
default with immediate liquidation of the firm. The triggering of the barrier is 

                                                 
10 See Haber et al. (1999). 
11 It is well known that the effects of discretizeation of time can be important when dealing with 
the evaluation of barrier options. The same problems arise when we use Monte Carlo 
simulation to evaluate the default probability. Nevertheless, this method, even if typically slow 
and not so accurate, is flexible and easy to implement. 
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fairly robust, nevertheless, this approach suffers from another anomaly. As 
pointed out by Haber et al. (1999), the resetting of t  is still sensitive to 

short-term movements of the value process X. For example, consider the case 
of a firm that enters bankruptcy and then, after the process X has spent  a long 
time (but less than  ) under the barrier, it reaches the default threshold (from 
below) again, before the grace period has elapsed. At the maturity of the bond, 
the firm will be able to repay its debt, even if it has spent in financial distress 
almost all the time. As an alternative example, consider a firm that enters and 
exists bankruptcy more than once during the life of the debt, this without 
causing liquidation of the firm (note that successive defaults are possible in 
the economic reality). 

In order to cope with these anomalies, Haber et al. (1999) and Moraux 
(2003) suggest to consider the cumulative excursion (or occupation) time 
instead of the continuous excursion time12. Moraux (2003) points out that only 
occupation time models take into account the whole past financial distress  of 
the firm, even if this approach may not be appropriate for very long term 
bonds. Such an approach considers the total time (over the monitored interval) 
spent by the value process beyond the default threshold, hence it seems more 
suitable in order to study the financial history and distress periods of the debt 
issuer.  

Formally, if H is the barrier, T the maturity of the bond, and   is the 
maximum duration of time allowed below the barrier, the occupation time is 
defined as follows  

 

  
T

HX
T dt

t00 .1                                       (9) 

 
T
0  is a measure of the amount of time the process X spends below the barrier 

during the time interval ],0[ T . The probability of default is defined by 

 ][][
0

0 
 T

T 1EQ .  

In this formulation, the clock is not reset to zero, and the default time 
is defined as the first instant the process X has spent totally an amount of time 
  below the default boundary,  

 

                                                 
12 Options linked to occupation time are also called “ParAsian” options in Haber et al. (1999). 
See also Hugonnier (1999). 
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}.:0inf{ 0
*  tt                               (10) 

 
Monte Carlo simulation can be used in order to compute an estimate of the 
average time of default and the default probability.  

It is worth noting that the first-passage approach is more favorable to 
bondholders, while the excursion time approach, allowing for a grace period, 
favors firm's rights. Occupation time approach falls, in a certain sense, 
between the classical first-passage and the Parisian time approaches.  

 
 

4 - Excursions height and length: an application to credit risk 
 
Gauthier (2002) studies the stopping time defined by the first instant 

when a Brownian motion either spends consecutively more than a certain time 
above a given level, or reaches another level. This stopping time generalizes 
both the simple hitting time and the Parisian time. Gauthier derives the 
Laplace transform of this stopping time and applies the obtained results to the 
valuation of investment projects with a delay constraint and the possibility of 
starting immediately the project but at a higher cost.  

In this section, by exploiting Gauthier's idea, we define the default 
time as the first instant when a relevant process either stays continuously for a 
certain time interval under the default boundary, or hits another lower  
threshold. In such a way, we could model situations in which a firm is allowed 
temporarily to be short of funds, but enters default immediately when the 
financial distress becomes severe. If either the firm's negative cash flows 
persist for an extended period of time, or the firm exhausts all its lines of 
credit and liquid assets, it defaults right away.  

More precisely, we are interested in the first time *  when the 
process 0)( ttX  governing default either spends consecutively a given period 

of time   (with T ) below the default boundary H, or reaches the lower  

threshold HH  . 
Let, as in the previous section, 
 

}:sup{ HXts s
H
t                                 (11) 

 
be the last time, before t, that the process X hits the barrier H. Define the 
excursion time  
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}:0{inf }{   HXt
H

t
t 1 ,                          (12) 

 

where H
tt t  , and the hitting time  

 

}:0{inf 


HXt t
H .                             (13) 

 
In this formulation, the default time is 

 

),(min* 

 HH  ,                                    (14) 
 

and the probability of default is ][][
}{

*
* T

T





 1EQ .  

The definition of the stopping time *  in (14) extends both the  

excursion time and the first-passage time definitions. *  is the first time the 
process X leaves the region defined by the default boundary H on top and the 

lower boundary H on bottom, and length  , without reaching the barrier H 
again from below. Credit risk models based on excursions height and length 
account for both the severity (height) and persistency (length) of the financial 
distress (the excursion).  

Let us consider, for simplicity, constant boundaries. Figure 1 shows 
an example of excursions in the distress region: default occurs only for path A 
at time A .  

As an alternative, one could also model H and H  as time-varying 
barriers:  

 
)( tT

t eHH                                          (15) 

 
and 

 
)( tT

t eHH    ,                                      (16) 

 
with parameters    (  and  can be interpreted as discount rates), and 

0H  (typically set equal to the face value of the debt F). In order to avoid 
inconsistencies, the event of default at maturity has to be defined carefully, as 
discussed in section 2.  
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Figure 1 Instances of default time in the approach based on excursions 
height and length. 
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These boundaries could also be endogenously determined, as in the 

model proposed by Paseka (2003) (which is similar to the approach here 
presented), in which default occurs at the time  

 

}:0{inf B
t

B HXt  ,                               (17) 

 

where 0BH  is the bankruptcy barrier (the level at which the firm enters 
bankruptcy). Liquidation occurs only if the reorganization is unsuccessful, 
and this happens at time  

 

}:0{inf L
t

L HXt  ,                               (18) 

 

where BL HH   is the liquidation barrier. Otherwise, if the value of the firm 

rises to a certain level RH  (which represents the reorganization boundary) at 
which a reorganization plan is proposed by the debtor, the firm exits default. 
Define the random time  

 

}:0{inf R
t

R HXt  ,                              (19) 
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then the timing of exit from bankruptcy is the minimum between the 
reorganization time and the liquidation time  

 
LR  * .                                        (20) 

 

In Paseka's model, the level LH  is exogenously specified, while the 

boundaries BH  and RH  are both determined endogenously in order to 
maximize equity value. As a result, also the duration of bankruptcy is a 
solution of a bargaining process.  

The idea of modeling excursions in space and time for valuing 
corporate debt could be generalized by introducing multiple boundaries at 
which the firm value process must take on specific values. In such a 
framework, the triggering of a barrier signals some credit event like, for 
example, a credit migration (a downgrade or an upgrade in rating of the 
issuer). To this regard, Esteghamat (2003) points out that “boundaries in the 
space separate credit events”, and proposes a model which connects structural 
and credit rating models by treating credit events as crossings of a 
multidimensional stochastic process through bounded regions in a probability 
space.  

A further generalization of the approach based on excursions height 
and length, and related stopping times, is the idea of weighting large 
deviations below the default barrier more strongly, in order to take into 
account the severity of the financial distress. As suggested by Haber et al. 
(1999), in the modeling of financial options with Parisian features, the speed 
at which the clock process t  changes could be proportional to the distance 

of the value process X from the default barrier. Another possible specification 
consists in considering upper boundaries together with lower boundaries: the 
time spent above the default threshold might be subtracted from the time spent 
below it. This latter formulation could be useful in modeling situations in 
which a firm alternates periods of fund shortages to excess of liquidity. One 
can easily envisage many other possible stylized situations. 

 
 

5 - Analysis of some numerical examples 
 
In this section we examine the effects of different default time 

specifications on bond prices and credit spreads under the assumptions of one 
of the structural models proposed in the literature. In particular, in the 
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simulation analysis, we adopt the model proposed by Cathcart and El-Jahel 
(1998) which is summarized in the appendix.  

In order to determine the default probability we used analytical 
formulas (when available) and Monte Carlo simulation in all other cases. As  
already observed, the idea of modeling the time of default as a hitting or 
excursion time is applied in a very easy and intuitive manner in the 
simulation. One generates a sufficiently high number of trajectories for the 
process X that signals default, and the default probability is simply 
approximated by the relative frequency of the default triggering event.  

In the experiments carried out, we generated 000100  paths ( 00050  

antithetic) of the process X. We considered a time step equal to 250/1t  
(which approximatively corresponds to daily observations of  the process X) 
and bond maturities (in years) in the range [0, 20]. 

Figure 2 shows the bond prices (where p, represented by a dotted line, 
is the value of the default-free bond) and the term structure of credit spreads 
for different values of the writedown w and for different specifications of the 
default time. More precisely, in the first case shown in figure 2, we used the 
original model of Cathcart and El-Jahel (1998). In the second case reported, 
we introduce a delay of 5.0  (six months), while in the third case we 
consider the cumulative excursion time. In the fourth case, we introduce both 

the grace period   and a lower boundary HH 9.0 .  
The term structure of credit spreads displays the typical humped 

shape. We observe that, the introduction of a delay in the timing of default has 
the effect of changing the shape and level of credit spreads. When the default 
barrier is assumed constant, as in this case, and being other model factors 
unchanged, we obtain higher bond values and then lower credit spreads. This 
result is also intuitive. Observing the graphics in figure 2, it seems that 
different hypothesis made on the excursions have no such an effect on the 
spreads. This is, actually, due to fact that the process X has continuous paths 

and “takes some time” to reach the lower barrier H  (which is set at 90% of 
the value of H). On the other hand, what changes is the expected time of 
default: the introduction of a grace period and different definitions of default 
time have the effect of avoiding or at least postponing default. Intuitively, the 
average time of default in excursion models is higher than in the first-passage 
case (the results of the simulation are not reported here in detail). Default 
occurs on average before in the cumulative excursion case than in the Parisian 
case. The introduction of a lower boundary causes earlier default and the 
probability of default is higher. Recall also the definition of default at 
maturity (which occurs in any case if the relevant process is below a certain 
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level); such an assumption has an effect on the way we compute the 
probability of default.  

Figure 3 shows another similar experiment, in which we consider a 
higher ratio 2/0 HX  (only the results for the term structure of credit 

spreads are reported). Of course, in such a case the probability of default is 
lower. It is interesting to observe that the default probability (and 
consequently the spreads) are zero in the short period: this fact is typical in 
structural models and is due to the assumption of continuous paths for the 
process which drives default. In figure 4 we let the ratio HX /0  vary and 

held other parameters constant: the lower the solvency ratio, the higher the 
default probability and consequently the credit spreads, with different effects 
on the timing of default.  

 
 
6 - Conclusion 

 
A variety of approaches have been proposed in the literature with the 

aim of evaluating defaultable debt and trying to better explain the process that 
drives default. First-passage approach makes no distinction between default 
and liquidation. Recently there has been increasing interest in the credit risk 
literature in models which involve stopping times related to excursions. This 
relatively new approach has been discussed, highlighting its advantages and 
disadvantages. 

We then proposed a generalization of both the first-hitting time and 
the excursion time approaches, which consists in defining the default time as 
the first instant at which the firm value process (or another signaling process) 
either has spent a certain time below the default threshold or hits a lower 
barrier. In the present work, we focused more on the different definitions of 
the timing of default, rather than on other important and interesting issues 
(which require further research) like the specification of the default boundary, 
the dynamics of the process that governs default, the recovery value upon 
default, the dynamics of the default-free interest rate and its correlation with 
the process that signals default. On the other hand, the idea of modeling the 
timing of default as either a hitting or excursion time is potentially applicable 
to a very large class of models. 
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Figure 2 Defaultable ZCB and default-free ZCB prices and the term 
structure of credit spreads.  
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Defaultable ZCB and default-free ZCB (dotted line) prices and the term structure of 
credit spreads for different values of the writedown }1,75.0,5.0,25.0{w , in the 

first-passage, excursion (with 5.0 ), cumulative excursion, and excursion in 

height and length (with HH 9.0 ) cases. The other parameters are: 02.0 , 

2.0X , 5.1/0 HX , 02.0r , 04.0 , 5.0 , 03.0r . 
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Figure 3 The term structure of credit spreads. 
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The term structure of credit spreads for different values of the writedown 
}1,75.0,5.0,25.0{w , in the first-passage, excursion (with 5.0 ), cumulative 

excursion, and excursion in height and length (with HH 9.0 ) cases. The other 

parameters are: 02.0 , 2.0X , 2/0 HX , 02.0r , 04.0 , 

5.0 , 03.0r . 
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Figure 4 The term structure of credit spreads. 
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The term structure of credit spreads for different values of the ratio 

}5.2,2,5.1{/0 HX , in the first-passage, excursion (with 5.0 ), cumulative 

excursion, and excursion in height and length (with HH 9.0 ) cases. The other 

parameters are: 02.0 , 2.0X , 5.0w , 02.0r , 04.0 , 

5.0 , 03.0r . 
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Finally, we examined the effects of different default time 

specifications on bond prices and credit spreads within a stylized model. 
Based on the results of the numerical analysis carried out, we observed that 
the introduction of a delay in the timing of default has an impact on credit 
spreads. When the default barrier is assumed constant, and being other model 
factors unchanged, we obtain (as expected) higher bond values and, hence, 
lower credit spreads. 

Observing the term structure of credit spreads obtained in the 
numerical experiments, one can notice that at short maturities the issuer has 
no or very low default risk, after which, conditional on no earlier default, 
credit spreads rises (also significantly in some cases). Many authors point out 
that such term structures of default probabilities and credit spreads are not 
realistic. The excursion approach retains (and even stresses) this characteristic 
which is common to first-passage time models, based on a diffusion process 
that drives default, and perfect knowledge of the firm's value and default 
boundary. Even thought an issuer may be of poor credit 
quality the probability of default within a short time horizon is very low. 
Models of firm dynamics that allow for jumps, or imperfect information (of 
course at the expense of some tractability), would generate term structure of 
credit spreads and default probabilities more in accord with observed data. 
This important issue is left for future research. 
 
 
Appendix. A model with constant default boundary and stochastic 
default-free interest rate 

 
The model proposed by Cathcart and El-Jahel (1998) is in line with that of 
Longstaff and Schwartz (1995). The authors introduce the idea of a signaling 
process whose dynamics governs default. More precisely, default occurs at 
the first instant such a signaling process hits a constant default threshold. 

Assume a perfect frictionless market, and let 0)(  ttXX  denote the 

risk-neutralized process that signals default, such that 
 

00  XdWXdtXdX X
ttXtt  ,               (21) 

 

where  and 0X are constant parameters, and XW  is a standard Wiener 

process. 
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Note that, in this setting, the assumption of a constant drift, not 

depending on r, is justified by the fact that the signaling process is not 
necessarily a value process. The signaling process should be able to describe a 
variety of effects that can determine default, like for example shortage of 
funds. The  authors point out that this formulation is also suitable for 
sovereign institutions, for which it would be difficult to identify underlying 
assets.  

The default-free spot rate r is assumed to follow a mean reverting 
square root process, according to Cox, Ingersoll and Ross (1985) model 
(CIR). Its risk-adjusted dynamics is 

 
r

ttrtt dWrdtrdr   )( ,                        (22) 

 

where 00 r ,  ,   and 0r  are constant parameters, and rW  is a 

standard Wiener process. The parameters   and   are the long-term mean 
value of r and the speed of adjustment to  , respectively.  

Let ),( Ttp  denote the price at time t of a default-free ZCB with 
maturity date T. In CIR model, the value of the bond can be calculated using 
the formula 
 

trBeATtp )()(),(   ,                                 (23) 
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Cathcart and El-Jahel (1998) assume, furthermore, that XW  and rW  
are uncorrelated. As an immediate result, the process that governs default is 
independent of the interest rate process. The debt issuer enters default at the 
first instant the process X reaches the barrier H.  

A crucial assumption concerns the recovery value upon default. Debt 
holders receive w1  default-free ZCBs with the same maturity and face 
value of the corporate debt. The percentage of the writedown w  is assumed 
constant. In particular, this assumption allows to valuing securities (even 
complex liabilities) independently from other liabilities issued by the firm. 
Coupon bearing bonds can be priced in an easy way, as a portfolio of ZCBs.  

Let ),;,( TtrXv  denote the value at time t of a defaultable ZCB, with 
maturity T. v satisfies the partial differential equation 
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subjected to some conditions (see Cathcart and El-Jahel, 1998). If default has 
not occurred, then 

 
1),;,( TTrXv .                                       (28) 

 
The following boundary condition holds, 
 

),(),;,( TtpTtrv  .                                   (29) 
 

In the event of default, HX t  , one has 

 
),()1(),;,( TtpwTtrHv  .                           (30) 

 
Moreover, the boundary conditions for r are 
 

0),;,(,0),;,(  rTtrXvTtXv .           (31) 
 

Given the hypothesis of the model, the value of a defaultable ZCB is 
 

)(),(),(),;,( TTtpwTtpTtrXv H
t  Q ,               (32) 
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where ),( Ttp  is the value of a default-free ZCB with the same features, 

which is calculated using formulas (23)-(26). )( TH
t Q  is the probability 

of default under the risk-neutral measure.  
This probability can be evaluated analytically (see Moraux, 2004): 
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where 2/2
X  , tT  , }:0inf{ HXt t

H  , and )(N  is 

the cumulative distribution function of a standard Gaussian random variable. 
In this model, credit spreads can be easily calculated 
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and do not depend on the level of interest rates. 
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